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A Multiresolution Image Cache for Volume Rendering

27th February 2003

Abstract

We discuss the techniques and implementation details
of our shared-memory image caching system for vol-
ume visualization and iso-surface rendering. One of
the goals of our system is to decouple image genera-
tion from image display. This is done by maintaining
a set of impostors for interactive display while the
production of the impostor imagery is performed by
a set of parallel, background processes.

Our system introduces a caching basis that is free
of the gap/overlap artifacts of earlier caching tech-
niques. Instead of placing impostors at fixed, pre-
defined positions in world space, our technique is
to adaptively place impostors relative to the camera
viewpoint. The positions translate with the camera
but stay aligned to the data; i.e., the positions trans-
late, but do not rotate, with the camera. The viewing
transformation is factored into a translation transfor-
mation and a rotation transformation. The impostor
imagery is generated using just the translation trans-
formation and visible impostors are displayed using
just the rotation transformation.

Displayed image quality is improved by increasing
the number of impostors and the frequency that im-
postors are re-rendering is improved by decreasing
the number of impostors.

keywords: image cache, impostors, scientific visu-
alization, multiresolution techniques, hierarchies
techniques

1 Introduction

Scientists are faced with a problem that as their sim-
ulations grow to sizes where interesting features and
structures can be resolved, the features themselves
become to small (relative to the size of the data) to

find, and the structures too large to visualize. Inter-
active navigation and exploration of these datasets is
essential, and showing both large scale structures and
small scale features in the same visualization is essen-
tial. However, the data size prevents efficient render-
ing of even single frames, let alone multiple frame
per a second that is required for interactive explo-
ration. While multiresolution techniques applied to
the source data can improve rendering speed, it still
requires that the entire approximation be rendered
every frame. For some newer datasets, even mini-
malistic approximations are too large to be rendered
interactively.

Caching and resusing imagery over several frames
to amortize the cost of rendering that imagery is prov-
ing to be a very usefull technique (see section 2).

We have developed a system to cache imagery for
volume visualization and iso-surface rendering that
addresses issues specific to the use of impostors sci-
entific visualization (section 3).

Our system decouples generation of imagery from
the display of the imagery, and decouples the res-
olution of generated imagery from the resolution of
displayed imagery . Impostor is the name for the
entity that associate a cached image with a spatial
position and extent (and temporal position and ex-
tent for time varying data sets). Secondly, our sys-
tem also decouples the placement of impostors from
the specifics of the data layout; that is, the impos-
tors placed to reflect user interest and rendering con-
cerns. Our system introduces a caching basis that
is free of the gap and owverlap artifacts of billboard
techniques (section 4). Instead of placing impostors
at predefined positions in world space, our technique
is to place impostors at positions relative to the cam-
era viewpoint, that move with the camera viewpoint.
We call this a cube-cache.

Our system’s structure 5 uses shared memory



symmetric multiprocessor machine to communication
messages and images, a display process to render im-
postors, and multiple generator processes to produce
impostor imagery.

The results (section 6) are promising, with linear
scaling for a demonstration software based generator
process. Limitations of hardware and software pre-
vent use from studying scaling for real scientific data.
There are a number of items (section 7) we need to
add to our system to make it a viable tool for scien-
tists.

2 Related Work

Bethel et.al. [Bet00, BSL*00] discuss the Visipult
system - a distributed, multiresolution visualization
system for time-varying datasets. Imagery is pro-
duced in distributed set of computers. Visapult’s
rendering pipeline starts with a multiresresolution
dataset, a bricked, cartesian grid. Imagery is pro-
duced and the brick-level and transmitting to the
viewing system. While they do not mention it, their
system must have the gap and overlap artifacts be-
cause the placement of impostors is not held fixed,
relative to the camera. The results for the work are
very specific to the decomposition of the datasets and
image generation is not independent of the data.

There is significant amount of work [CTFBOL,
CSKK99, SS96, SLST96] on use and pre-processing
of impostors for viewing geometric datasets. Signifi-
cant preprocessing efforts to place impostors and de-
termine visibility. Most typical applications are ar-
chitecture walk-throughs, either of individual build-
ings, but more recently, of whole cities or city dis-
tricts. These datasets are static are intended to be
visualized many times, so it is reasonable to spend a
large amount of preprocessing time to accelerate the
rendering of them. Also, density and spatial extent
of geometric datasets are rarely uniform, resulting is
non-uniform placement of impostors. Often, signifi-
cant user input is required to specify good impostor
locations.

3 The Problem

Scientific data, however, differs is several significant
ways, and techniques for caching imagery for geomet-

ric datasets do not work on them. A significant num-
ber of scientific datasets are uniform, cartesian grids,
where the information density is very high and uni-
form. Thus, impostors density must be corresponding
very high and uniform.

Densely placed impostors exhibit two related arti-
facts. The first is the gap artifact, and occurs when a
large structure is represented by a set of adjacent im-
postors, then is viewed from a different position from
where the impostors where originally generated. The
impostors move apart from each other and no longer
completely cover the large structure. When this oc-
curs, regions hidden by this larger structure become
exposed. The overlap artifact occurs when the im-
postors move together. Here, parts of the structure
can cover, or overlap, itself.

It is not generally possible to determine good
positions, a priori, especially when run-time, user-
controlled parameters, such as transfer functions or
isocontour values may significantly alter the appear-
ance of the data. Thus, it is not possible to pre-
process any imagery.

4 Caching Basis

Our system introduces a caching basis that is free of
the gap and overlap artifacts of billboard techniques.
Instead of placing impostors at predefined positions
in world space, our technique is to place impostors at
positions relative to the camera viewpoint, that move
with the camera viewpoint.

We call this a cube-cache. Figure 1 shows an exam-
ple cube-cache of a 2d cache viewed from above. The
red dot at the center is the camera center; black lines
show the base decomposition of the space around the
camera; blue lines show the KD-tree decomposition
of each quadrant; and green lines show individual im-
postors. The impostors are shown slightly smaller
that their real physical extent (delimited by blue &
black lines), as to emphasize that they are indepen-
dent entities. Note that the different quadrants have
different degrees of decomposition. Each face of the
cube-cache is an independent KD-tree.

Note that the KD-tree decomposition planes are
either parallel to the cube face or pass though the
origin of the cube-cache. This is the reason that there
are no gap or overlap artifacts: impostors run to the
boundaries of a KD node are their end-points do not
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Figure 1: the cube-cache: 2d cache viewed from
above. The red dot at the center is the camera center;
black lines show the base decomposition of the space
around the camera; blue lines show the KD-tree de-
composition of each quadrant; and green lines show
individual impostors.

move with respect to the camera.

Figure 2 shows where impostors would be reused
between frames. In the first (left) frame, a set of
impostors are rendered. The blue and green impos-
tors are generated for (or before) the first frame. In
the second frame, as the camera turns clockwise, an-
other set of impostors are rendered. Those shown in
green are rendered in both frames (ie, generated in
the first frame and just reused in the second). Im-
postors shown in blue are not visible in the second
frame, and may be deleted (if running out of cache
space). The purple impostors in the second frame are
now visible, so they may be placed in a work queue
to be generated if their imagery is invalid.

4.1 Caching basis artifacts

There are two artifacts from this design. The first
is that thethe projected size of the pixels are smaller
as one approaches the edge and vertexes of the base
cube. The second is when using nearest-neighbor fil-
tering for low-resolution images, one can see the in-
dividual pixels and can see that they are not parallel.
Figure 3 shows an example of both issues. Neither of
these problems should really affect user perception of
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Figure 2: Reuse between frames: blue and green im-
postors are rendered in first frame. The green are
reused in the second, with the purple newly visible. If
the purple impostors are invalid, they will be queued
for re-rendering.

a data space.

4.2 Rendering

The viewing transformation is factored in the a trans-
lation and rotation transformation. The rendering
cycle consists of rendering and caching invalid, visible
impostors just using the translation transformation,
then rendering the impostors with just the rotation
transformation.

All impostors have the same fixed resolution. An
impostor is refined by replacing it with a left/right,
top/bottom, or front/back impostor children, where
each child contains a copy of the corresponding re-
gion of the parent impostor. The new impostors are
marked for future re-rendered. Impostors are coars-
ened by removing the children and replacing the par-
ent’s imagery by a filtered version of the children’s
imagery.

Rotating the camera direction does not invalidate
any of the impostors, but newly exposed impostors
may require rendering, and possibly refinement. Im-
postors now partially exposed by to be coarsened.
Our current system does not use any error metric for
prioritizing impostors for re-rendering and visible im-
postors are re-rendered in a round-robin scheme.

5 System Architecture

Our system uses shared memory on a symmetric mul-
tiprocessor machine, a display process, and multiple
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Figure 3: Artifacts of the cube-cache on a 64° voxel
trebecular bone dataset. The first artifact is that the
projected size of the texels are smaller at the edges
and vertices of the base cube-cache. The second arti-
fact is when using nearest-neighbor filtering for low-
resolution images, one can see the individual pixels
and can see that they are not parallel. Neither of
these problems should really affect user perception of
a data space. The yellow and red lines in figures (a)
and (b) show the boundaries of impostors at one of
the vertecies of the cube-cache. Figures (b), (d), and
(f) show the magnified centers of figures (a), (c), and
(e), respectively. Figure (d) shows the differing orien-
tations of the textels using nearest-neighbor filtering.
Figure (f) shows the affects of using linear filtering;
the differing orientations are still visible, but much
less obvious, and “limited” to the profiles.
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Figure 4: The system architecture. There is one
Viewer processes and multiple Generator processes.
The viewer writes requests to, and generators read
requests from, the work queue. Requests are written
back to the done queue. Generators write images to
the image cache.

generator processes. We use process-level parallelism,
rather than thread-level, due to issues with OpenGL
thread safety and performance. Our system currently
uses VIK as the rendering engine. Shared memory
is implemented using the Unix mmap function call.
The restriction is that the mapped file, and thus the
image database, cannot be larger than 1GB; we have
not found this to be an issue. Semaphores are the
synchronization primitive. There can be one view
program and multiple generator programs.

At start-up, a file is created that is large enough to
store the image cache and the work and done queues.

The impostor database is just read by the dis-
play process and written by the generator processes.
The work queue is written by the display process to
request that impostors be subdivided, rendered, or
merged. Generator processes only read from the work
queue. The done is just written by the generator pro-
cesses, and only read by the display process.

Both queues are fixed-size circular queues with the
same number of elements. The available space in the
queues is one less than the actual space allocated,
as we use just address arithmetic (ie, comparing head
and tail pointers ), to determine if the queue is empty
or full. We found that when we used a size field
to calculate empty or full states, and running many
generator processes, processes spent significant time
blocking for the semaphore for the size field.



5.1 Generator processes

The generator processes obtain tasks (regions to ren-
der) from the work queue, render the region, place
the image into the corresponding place in the im-
age database, and write a write the task to the done
queue. At this time, each generator process requires
a display window be instanced on a desktop, some-
where. Offscreen rendering does not generally seem
to work, and, according to the VTK documenta-
tion, rendering is performed entirely in software in
offscreen mode. Several rendering modes are avail-
able: we use VITK’s texture-based volume visualiza-
tion, geometry-based iso-surface rendering, ray-cast-
based volume visualization, and ray-cast-based iso-
surface rendering.

5.2 Viewer process

The viewer program just renders impostors that are
both within budget and are available. If an tile has
no children, but does not meet the rendering require-
ments, it is added to the generator queue. The viewer
process also reads the ’'completed’ queue to see what
regions have been completed by the generator pro-
cesses. When a region is completed, the viewer notes
this in the image database.

We use this break-down of work to minimize the
amount and granularity of sharing (via semaphores)
that the processes need to perform.

5.3 Shared Memory Queues and Is-
sues

We started with a very basic circular queue im-
plementation for our queues, using two pointers to
record the head and tail positions, and a size field
to record the available space. Processes (both viewer
and generator) must block to add or remove elements
from the queue. The work and done queues are im-
plemented as fixed-size circular queues. The queues
are fixed size as it is not very easy to allocate more
memory in a mmaped-shared memory scheme. A size
attribute tracks the available space in the queues.
Head and tail attributes track the location of the
queue’s head and tail; elements are added at the head
and are removed at the tail.

We found that this basic implementation scaled
very poorly, and when using eight (8) generator pro-

cesses (and 1 viewer), the processes would occasion-
ally (71% of the time) block for as long as 0.5 second
on a semaphore. This caused unacceptable stalls in
the viewer process.

When using queues, where one process only writes
to the queue and the other process only reads from
the queue, means that the reader of a queue never
modifies the head of the queue, and the writer of the
queue never modifies the tail of the queue. Thus,
the viewer and generators are now modify different
attributes, relaxing the consistency constraint. That
is, a reader process can only read from from a queue
or test if it is empty; a writer process can only write
to a queue or test if it is full. The test for a queue
being full or empty is now conservative - a reader
may find the queue empty, when, it fact, there may
be something in it; similarly, a writer may find the
queue full, when in fact there are some slots available.

The caveat is that reading and writing pointers on
shared memory system must be atomic, and no par-
tial values are returned. Thus, assuming that ac-
cessing a pointer is atomic, we can use pointer arith-
metic to estimate queue size, and thus the viewer and
generator processes never need to block on a shared
semaphore. However, multiple generator processes
must still use a semaphore to remove work from the
work queue.

The “relaxed” model of a shared queue works cor-
rectly on the two systems that we have tested this sys-
tem on, using 32-bit pointers on two processor Linux
boxes and 48-processor SGI Origin3000.

5.4 Tasks and Messages

Three kinds of messages can be written to the work
queue: subdivide, generate, and merge. When a gen-
erator process starts to service a message, it removes
the message from the work queue. When a task is
completed, the message is simply move to the done
queue.

Subdivide

Subdivide an impostor and replace it with two chil-
dren impostors that cover the same extent. An im-
postor can be split (with respect to the view di-
rection) into left/right, top/below (see figure 5), or
front /behind impostors pairs (see figure 5) . Since all
impostors have the same resolution; when a left /right
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Figure 5: Refinement of a single impostors to pairs
of children impostors. For example, a single impos-
tors may first be split left/right, then top/bottom,
or top/bottom, then left/right. Note that the tex-
els in an impostor may have aspect-ratios other than
one-to-one.

Front/Back

Figure 6: Front/Back split

or top/bottom pair is generated, the effect is to dou-
ble to number of texels in the direction of the split.

For a front/back split, we factor the impostor into
afront/back pair by reversing the compositing OVER
operation. The OVER operator is defined as follows:

K = CyoverCy = Co+01(1 —C!())
v = aovera = o+ ai(l—ag)

Where (' » and a; 5 are the input opacity-weighted
color and opacity values, respectively, and K and
v are the output opacity-weighted color and opac-
ity values, respectively. Note that the OVER oper-
ator performs the same calculation on each of the
red, green, and blue channels; we use a single value
to simplify the discussion. We want two child im-
postors that, when composited together, produce the
same affects are the parent impostor. Hence, K and
v correspond to the parent impostor, and Cj» and
o2 correspond to the child impostors. We also sim-
plify by making the front/back imagery the same,
e.g., C; = Cs and ag = ay.

Solving for C, given K:

K=C+(1-a)C=C(2-aq)

thus

And solving for a, given +:
y=a+a(l-a)=1-(1-a)
thus

a=1—+/1—-v

However, we have observed two issues with these
formulas. First, these operations are performed on
8-bit integer values, and can be very error prone.
Secondly, the structures in the data are not placed
uniformly in the associated region. If, for example,
the front half of the region associated with the parent
impostor is empty, the child impostor associated with
that front half will contain imagery belonging to the
back half. This is not a problem until one of the chil-
dren is re-rendered. If the front child is re-rendered,
the overall contribution of the front/back regions will
decrease as they effectively become more transparent.
Similarly, if the back impostor is re-rendered first, the



# Processors Rate Speed-Up
Ave | Min | Max
1 14 11 20 1.0
2 27 21 39 1.9
4 63 52 79 4.5
8 114 | 104 | 125 8.1
16 239 | 217 | 257 14.9
32 407 | 360 | 451 29.0

Table 1: Scalability study on Origin3000 with 48
250Mhz R10000s. Mandelbrot tile size is 1282 pix-
els. The rates listed are in tiles generated per sec-
ond. This study does not consider rates for subdi-
vide or merge requests, as they issued much less fre-
quent that generate requests. The variation is rates is
due to measuring an interactive session, rather than
a scripted one, so there is some variation in what was
generated.

overall contribution will increase, and they effectively
become more opaque. Fortunately, due to proximity
and viewing parameters, the front and back pairs are
often re-rendered at nearly the same time.

Merge

Merge a left /right, top/bottom, or front/behind pair
for form a lower resolution image. This is used when
the camera position has not changed, but the re-
gion is less important (the user has turned the view
frustum away). The left/right and top/bottom pairs
are produced by low-pass filtering or subsampling,
depending on which filtering mode they has orig-
inally used. Merging a front/back pair is simply
compositing the front and back pairs together, e.g.,
parent = front OV ER back.

Generate

Actually render a region to an image. VTK is used
as the rendering engine, so anything that VITK can
render can be rendered and cached in our system.

6 Results

We show two different sets of results. The first is a
functionality study using the VTK-based visualiza-

Figure 7: Example multiresolution Mandelbrot.

tion based on our shared-memory system; the second
is scalability study using a multiresoultion Mandel-
brot fractal viewer. Both use the same underlying
infrastructure.

The reason that we have two is the nature of VTK.
When using the hardware-texture volume visualiza-
tion or geometry-based iso-surface rendering, running
more than one generator process per an InfiniteRe-
ality3 pipe severely impacts performance - due en-
tirely to the pipeline flushes that occur during con-
text switches. Secondly, software versions of volume
visualization and iso-surface rendering still require a
display window on the desktop (this off-screen func-
tionality does seem to work). This means that all
generated imagery is written to the display, then read
back, which is extremely slow. For the former, one
cannot reasonably do a scalability study with only
four pipes. For the latter, the system fails to scale
beyond four processes. Our test of the VIK system
allocated three pipes to generation, and one to view-
ing. Scaling was linear.

Our scalablility test software is a multiresolution
Mandelbrot program, which uses the same infrastruc-
ture as the VIK system. The generator processes
performs the Mandelbrot calculation entirely in soft-
ware. Speed-up is approximately linear; see table 1.
On a side note: the file that is used for shared mem-
ory can be displayed by our system without any gen-
erator processes, i.e., it can be used as a variety of
multiresolution image file.

The timing results were collected as follows: ev-
ery time a task is removed from the done queue by
the viewer process, it increments a counter. Once a
second, the counter is printed out, then reset to zero.



7 Future Work

Our multiresolution caching system shows promise,
but there are a number of additions to before it be-
come a useful product for scientists.

Currently, our system uses a round-robin approach
to updating impostors. This is not sufficient when
there are a large number of impostors being dis-
played. If there are a large number of impostors, the
rate at which impostors are update is slow, and it
can become difficult to navigate an environment. We
plan to implement an error- and view-criterion-driven
scheduler.

We plan to rewrite the rendering engine and scrap
our use of VTK. The is considerable overhead ren-
dering a frame in VTK, and it is not optimized for
texture-based volume visualization. VTK’s texture-
based volume rendering is extremely inefficient and
slow, especially when compared to what contem-
porary hardware-based volume visualization systems
can do. Also, VTK’s ray-casting engine has some is-
sues with consistency of lighting calculations for the
same scene when the camera is facing different direc-
tions.

Third, we plan to augment the system to handle
multiresolution, time-vary datasets.

Last, we plan to move our system to cluster of
Linux boxes. While the Origin3000’s shared memory
system performs very nicely, contemporary graphics
cards are an order of magnitude faster than Infinite-
Reality3 pipes.
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